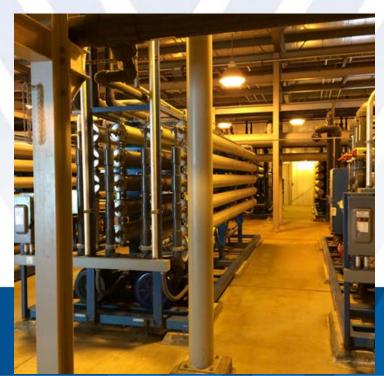


Cleaning up liquid waste streams at thermoelectric power plants

Paul Ziemkiewicz, PhD Director, Water Research Institute

Water Management Workshop **USDOE/NETL** 30 Nov 16



Terminology

- Intake: TSS removal
- Cooling circuit
 - Blowdown
- Boiler feed-TDS removal-Reverse Osmosis
 - RO reject

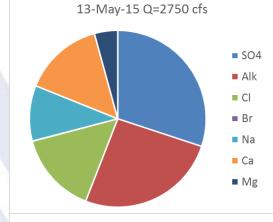
The WVU Energy Institute | energy.wvu.edu

- Ash pond hydraulic water
- FGD liquids

Ash and FGD disposal methods

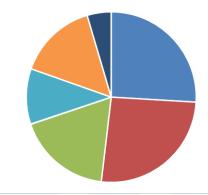
Dry handling of FGD solids

And fly ash

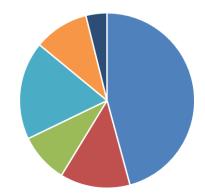


Water Balances

	conventional			
	PC ^a	Supercritical ZLD ^b		
	Q	Q	EC	
water circuit	gpm	gpm	μS/cm	notes
river intake	10621	4500	300	
TSS trt only		4500		
RO raw	468	250		
RO Reject	143	90	600	to UG mine to AMD plan
RO Permeate	325	160	0.06	boiler feed
CT makeup	9178	4250	300	
Blowdown	2938	750	2250	to scrubber makeup
CT Evaporation	6240	3500		
FGD water	650	>90%		To stack gas
FGD water		<10%		retained in FGD solids
Service water	325	0		dry handling
Discharge	4056	0		
	^a 780 mW conventional			Just below
	^b 780 mW super	critical/ZLD		gypsum
				saturation


Low Flow WQ

			Ohio	Monongahela	Allegheny	
			Pike Island	Elizabeth PA	Highland Pk.	
		units	13-May-15	11-Jul-12	16-Sep-15	
	Q	cfs	2750	452	2100	
	Т	°C	19	29	25	
	EC	μS/cm	337	649	313	
	рН		7.7	7.4	7.8	
	TDS_{sdc}	mg/L	182	345	198	
	SO4	mg/L	63	169	59	
	Alk	mg/L	54	48	59	
	Cl	mg/L	31	34	41	
	Br	mg/L	0.1	BDL	0.2	
-	Na	mg/L	21	67	24	
	Ca	mg/L	31	37	34	
	Mg	mg/L	9	14	10	
	Fe	mg/L	0.0	0.0	0.0	
	Mn	mg/L	0.5	0.0	0.0	
	Al	mg/L	0.0	0.0	0.0	
	Acid	mg/L	1.2	0.1	0.3	



Ohio River at Pike Island

Allegheny River L&D 2 16-Sep-15 Q=2100 cfs

Mon R. Elizabeth 11-Jul-12 Q=452 cfs

System water: volume/chemistry

water circuit	gpm	μS/cm		notes
river intake	10621	300	μS/cm	
RO Reject	143	600	μS/cm	to UG mine to AMD plant
RO Permeate	325	0.06	μS/cm	boiler feed
Blowdown	2938	2250	μS/cm	to scrubber makeup
FGD water	650	>20,000	mg TDS/L	Ca, SO4, Cl, Br, Hg
Ash hydraulic	325	<3,000	mg TDS/L	As, B, Se, TDS, SO4, Hg
Discharge	4056			

Water Treatment-Physics

- Gibbs Free Energy
 - $-\Delta G = \Delta H T\Delta S$
 - H=enthalpy-constant
 - T=temp-constant
 - S=entropy-not constant
- So: if H and T are constant, Δ free energy= Δ entropy

Partitioning of free energy in saline water treatment

Free energy=water potential:

 $\Psi = \Psi o + \Psi m + \Psi p$

- *o*=osmotic potential-free energy depression caused by solutes
- *m*=matric potential-free energy **depression** caused by sorption forces
- *p*=pressure potential-free energy increase or decrease due to +/- pressure on closed system
- Temperature also increases free energy

REVERSE OSMOSIS, NANO FILTRATION

as salt concentration increases in the left cell the amount of force required to overcome free energy depression also increases.

Also, salt concentrations will eventually exceed the solubility limit and cause membrane clogging.

CaSO4:2,505 mg/L Na_2SO_4 :195,000 mg/LNaCl:360,000 mg/L Na_2CO_3 215,000 mg/L

add force, pressure

If water is near the salt solubility limit, the reject rate will increase or membranes will clog

semi-permeable membrane-passes water, not salt

water

flow direction

salt + water Salt lowers free energy, salt concentrates

> reject brine

The WVU Energy Institute | energy.wvu.edu

As, Se in ash pond water

Ashpond water	Result	Units
Arsenic, As (total)	20.83	μg/L
Arsenic, As (dissolved)	19.46	µg/L
Arsenate, As ⁺⁵	16.91	µg/L
Arsenite, As ⁺³	6.52	µg/L
Selenium, Se (total)	33.67	µg/L
Selenium, Se (dissolved)	33.38	μg/L
Selenate, Se ⁺⁶	10.27	µg/L
Selenite, Se ⁺⁴	23.40	μg/L

sorbs to FeOOH

Treatment options

liquid	liquid Q gpm target contaminants		treatment methods	
river intake	10621	suspended solids	Lamallar separators, clear wells	
Boiler feed	325	all ions, low concentrations	RO	
RO Reject	143	all ions, modest concentrations	LS, NF/RO	
Blowdown	2938	Ca, Mg, CO3, SO4	LS, RO	
FGD water	650	Ca, SO4, Cl, Br, Hg	LS, RO	
Ash hydraulic	325	As, B, Se, TDS, SO4, Hg	FeOOH, Evaporation, wetlands	

Lime Softening:

Ca, Mg SO₄ + Na₂CO₃ = Ca, Mg CO₃ (s) + Na₂SO₄

Thank you and always know your route in advance

